首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5089篇
  免费   690篇
  国内免费   121篇
电工技术   27篇
综合类   241篇
化学工业   1851篇
金属工艺   25篇
机械仪表   197篇
建筑科学   82篇
矿业工程   5篇
能源动力   6篇
轻工业   1104篇
水利工程   24篇
石油天然气   63篇
武器工业   5篇
无线电   360篇
一般工业技术   855篇
冶金工业   35篇
原子能技术   171篇
自动化技术   849篇
  2024年   7篇
  2023年   117篇
  2022年   75篇
  2021年   382篇
  2020年   171篇
  2019年   174篇
  2018年   163篇
  2017年   194篇
  2016年   240篇
  2015年   243篇
  2014年   342篇
  2013年   366篇
  2012年   362篇
  2011年   350篇
  2010年   304篇
  2009年   334篇
  2008年   365篇
  2007年   317篇
  2006年   234篇
  2005年   235篇
  2004年   178篇
  2003年   174篇
  2002年   116篇
  2001年   94篇
  2000年   47篇
  1999年   50篇
  1998年   29篇
  1997年   19篇
  1996年   25篇
  1995年   33篇
  1994年   24篇
  1993年   22篇
  1992年   15篇
  1991年   17篇
  1990年   18篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1980年   3篇
排序方式: 共有5900条查询结果,搜索用时 15 毫秒
61.
Combinations of chemotherapeutic drugs with nucleic acid has shown great promise in cancer therapy. In the present study, paclitaxel (PTX) and DNA were co-loaded in the hyaluronic acid (HA) and folate (FA)-modified liposomes (HA/FA/PPD), to obtain the dual targeting biomimetic nanovector. The prepared HA/FA/PPD exhibited nanosized structure and narrow size distributions (247.4 ± 4.2 nm) with appropriate negative charge of −25.40 ± 2.7 mV. HA/FA/PD (PTX free HA/FA/PPD) showed almost no toxicity on murine malignant melanoma cell line (B16) and human hepatocellular carcinoma cell line (HepG2) (higher than 80% cell viability), demonstrating the safety of the blank nanovector. In comparison with the FA-modified PTX/DNA co-loaded liposomes (FA/PPD), HA/FA/PPD showed significant superiority in protecting the nanoparticles from aggregation in the presence of plasma and degradation by DNase I. Moreover, HA/FA/PPD could also significantly improve the transfection efficiency and cellular internalization rates on B16 cells comparing to that of FA/PPD (p < 0.05) and PPD (p < 0.01), demonstrating the great advantages of dual targeting properties. Furthermore, fluorescence microscope and flow cytometry results showed that PTX and DNA could be effectively co-delivered into the same tumor cell via HA/FA/PPD, contributing to PTX/DNA combination cancer treatment. In conclusion, the obtained HA/FA/PPD in the study could effectively target tumor cells, enhance transfection efficiency and subsequently achieve the co-delivery of PTX and DNA, displaying great potential for optimal combination therapy.  相似文献   
62.
In vitro mammalian cytogenetic tests detect chromosomal aberrations and are used for testing the genotoxicity of compounds. This study aimed to identify a supportive genomic biomarker could minimize the risk of misjudgments and aid appropriate decision making in genotoxicity testing. Human lymphoblastoid TK6 cells were treated with each of six DNA damage-inducing genotoxins (clastogens) or two genotoxins that do not cause DNA damage. Cells were exposed to each compound for 4 h, and gene expression was comprehensively examined using Affymetrix U133A microarrays. Toxicogenomic analysis revealed characteristic alterations in the expression of genes included in cyclin-dependent kinase inhibitor 1A (CDKN1A/p21)-centered network. The majority of genes included in this network were upregulated on treatment with DNA damage-inducing clastogens. The network, however, also included kinesin family member 20A (KIF20A) downregulated by treatment with all the DNA damage-inducing clastogens. Downregulation of KIF20A expression was successfully confirmed using additional DNA damage-inducing clastogens. Our analysis also demonstrated that nucleic acid constituents falsely downregulated the expression of KIF20A, possibly via p16 activation, independently of the CDKN1A signaling pathway. Our results indicate the potential of KIF20A as a supportive biomarker for clastogenicity judgment and possible mechanisms involved in KIF20A downregulation in DNA damage and non-DNA damage signaling networks.  相似文献   
63.
O6‐Alkylguanine‐DNA alkyltransferases (AGTs) are responsible for the removal of O6‐alkyl 2′‐deoxyguanosine (dG) and O4‐alkyl thymidine (dT) adducts from the genome. Unlike the E. coli OGT (O6‐alkylguanine‐DNA‐alkyltransferase) protein, which can repair a range of O4‐alkyl dT lesions, human AGT (hAGT) only removes methyl groups poorly. To uncover the influence of the C5 methyl group of dT on AGT repair, oligonucleotides containing O4‐alkyl 2′‐deoxyuridines (dU) were prepared. The ability of E. coli AGTs (Ada‐C and OGT), human AGT, and an OGT/hAGT chimera to remove O4‐methyl and larger adducts (4‐hydroxybutyl and 7‐hydroxyheptyl) from dU were examined and compared to those relating to the corresponding dT species. The absence of the C5 methyl group resulted in an increase in repair observed for the O4‐methyl adducts by hAGT and the chimera. The chimera was proficient at repairing larger adducts at the O4 atom of dU. There was no observed correlation between the binding affinities of the AGT homologues to adduct‐containing oligonucleotides and the amounts of repair measured.  相似文献   
64.
65.
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA‐based logic gates in which DNAzyme catalysis is controlled via toehold‐mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.  相似文献   
66.
DNA's remarkable molecular recognition properties, flexibility, and structural features make it one of the most promising scaffolds to design a variety of nanostructures. During recent decades, two major methods have been developed for the construction of DNA nanomaterials in a programmable way; both generate nanostructures in one, two, and three dimensions. The tile‐based assembly process is a useful tool to construct large and simple structures; the DNA origami method is suitable for the production of smaller, more sophisticated and well‐defined structures. Proteins, nanoparticles and other functional elements have been specifically positioned into designed patterns on these structures. They can also act as templates to study chemical reactions, help in the structural determination of proteins, and be used as platform for genomic and drug delivery applications. In this review we examine recent progresses towards the potential use of DNA nanostructures in molecular and cellular biology.  相似文献   
67.
We report a simple, versatile, multivalent ligand system that is capable of specifically and efficiently modulating cell‐surface receptor clustering and function. The multivalent ligand is made of a polymeric DNA scaffold decorated with biorecognition ligands (i.e., antibodies) to interrogate and modulate cell receptor signaling and function. Using CD20 clustering‐mediated apoptosis in B‐cell cancer cells as a model system, we demonstrated that our multivalent ligand is significantly more effective at inducing apoptosis of target cancer cells than its monovalent counterpart. This multivalent DNA material approach represents a new chemical biology tool to interrogate cell receptor signaling and functions and to potentially manipulate such functions for the development of therapeutics.  相似文献   
68.
69.
Cationic dendrimers are promising nanocarriers for gene delivery thanks to their ability to establish strong interactions with oppositely charged strands of DNA and siRNA and to promote their aggregation. The binding between dendrimers and nucleic acids is typically a complex process that involves various types of interactions at different scales. To design efficient dendrimer candidates for DNA and siRNA binding it is necessary to have a detailed understanding of their interactions with oligonucleotides in the solvent. Molecular simulation can support experimental work, providing a privileged point of view on the aggregation process. This Minireview discusses recent computational efforts to unravel dendrimer–oligonucleotide binding, and proposes a perspective of the multiscale aggregation process based on hierarchy and on the transformations of the interacting “molecular units” following intermolecular interactions.  相似文献   
70.
心力衰竭(heart failure,HF)是心室收缩和(或)舒张功能发生障碍的一种疾病,又称心功能不全,可由多种因素引起,主要表现为心脏结构和功能的异常改变,并以交感神经、肾素-血管紧张素-醛固酮等系统激活为特征。通过临床观察,心衰患者在药物治疗期间存在极大异质性,因此在实际用药时,除了要考虑一般的环境因素,还要顾及遗传背景,尤其是序列不改变的表观遗传学。目前,有报道认为心衰患者的用药反应和DNA甲基化、组蛋白修饰、microRNA等修饰相关,但涉及该领域的研究还不多见,因此本文就近几年心衰治疗药物的表观遗传药理学进展进行一个较为全面的综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号